Article ID Journal Published Year Pages File Type
10114222 Remote Sensing of Environment 2005 12 Pages PDF
Abstract
Bio-optical algorithms for remote estimation of chlorophyll-a concentration (Chl) in case-1 waters exploit the upwelling radiation in the blue and green spectral regions. In turbid productive waters other constituents, that vary independently of Chl, absorb and scatter light in these spectral regions. As a consequence, the accurate estimation of Chl in turbid productive waters has so far not been feasible from satellite sensors. The main purpose of this study was to evaluate the extent to which near-infrared (NIR) to red reflectance ratios could be applied to the Sea Wide Field-of-View Sensor (SeaWiFS) and the Moderate Imaging Spectrometer (MODIS) to estimate Chl in productive turbid waters. To achieve this objective, remote-sensing reflectance spectra and relevant water constituents were collected in 251 stations over lakes and reservoirs with a wide variability in optical parameters (i.e. 4 ≤ Chl ≤ 240 mg m− 3; 18 ≤ Secchi disk depth ≤ 308 cm). SeaWiFS and MODIS NIR and red reflectances were simulated by using the in-situ hyperspectral data. The proposed algorithms predicted Chl with a relative random uncertainty of approximately 28% (average bias between − 1% and − 4%). The effects of reflectance uncertainties on the predicted Chl were also analyzed. It was found that, for realistic ranges of Rrs uncertainties, Chl could be estimated with a precision better than 40% and an accuracy better than ± 35%. These findings imply that, provided that an atmospheric correction scheme specific for the red-NIR spectral region is available, the extensive database of SeaWiFS and MODIS images could be used to quantitatively monitor Chl in turbid productive waters.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , , , ,