Article ID Journal Published Year Pages File Type
10128018 Chemistry and Physics of Lipids 2018 23 Pages PDF
Abstract
Functionality of articular cartilage results from complex interactions between its molecular components. Among many biomolecules, two are of prime importance for lubrication: hyaluronic acid (HA) and phospholipids (PL). The purpose of this study is to discuss a mechanism of interaction between these two components and how their synergies contribute to nanobiolubrication of articular cartilage. Preliminary molecular dynamics simulations have been performed to investigate these interactions by adopting a capstan-like mechanism of action. By applying a constant pulling force to both ends of a HA molecule, wrapped around a PL micelle, we viewed the rotation of the PL micelle. The simulations were performed upon two physicochemical constraints: force- and solvent-dependency. The results show the efficiency of rotation from intermolecular bond creation and annihilation. We found a direct relation between the available surface of the micelle and the magnitude of the force, which varies significantly through the unwinding. The movement of the attached molecules is characterized by a slide-to-roll relation, which is affected by the viscosity of the surrounding medium. As a consequence, two solvents were studied for specific force conditions and the molecular dynamics simulation exhibited double the slide-to-roll coefficient for the viscous solvent as compared to its low-viscosity limit.
Related Topics
Physical Sciences and Engineering Chemistry Chemistry (General)
Authors
, , , , , ,