Article ID Journal Published Year Pages File Type
10128807 Vacuum 2018 21 Pages PDF
Abstract
The formation of deformation-induced martensite was studied during cold rolling of an AISI 316 stainless steel. Based on X-ray diffraction (XRD) phase analysis and metallographic etching, it was demonstrated that by increasing the reduction in thickness, the amount of martensite increases and tends to a saturated value. The kinetics of martensitic transformation was studied by consideration of von Mises equivalent strain. The Olson-Cohen, Angel, Johnson-Mehl-Avrami-Kolmogorov (JMAK), and Shin et al. models were analyzed and discussed. It was shown that the Avrami exponent, which is related to the nucleation mode, can be successfully correlated to the established theories of phase transformations. By taking into consideration of critical strain and martensite saturation in the JMAK-type formula, the Shin et al. model was characterized as the appropriate kinetics model to describe the formation of martensite during cold rolling.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, ,