Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10129749 | Virology | 2018 | 7 Pages |
Abstract
We previously demonstrated that human parainfluenza virus type 2 (hPIV-2) induces RhoA activation, which promotes its growth. RhoA controls the equilibrium between globular and filamentous actin (F-actin). We found that F-actin formation is induced by wild type (wt) hPIV-2 infection, and that inhibition of F-actin formation by cytochalasin D decreases hPIV-2 growth. In wt RhoA-expressing cells, F-actin formation occurs and hPIV-2 growth is promoted. Overexpression of T19N RhoA, a dominant negative (DN) form of RhoA, inhibits hPIV-2-induced F-actin formation, and suppresses hPIV-2 growth. Immunoprecipitation assays reveal that hPIV-2 V protein binds only to DN RhoA, and this interaction requires its C-terminal Trp residues. F-actin formation is not observed during infection of recombinant hPIV-2 expressing Trp-mutated V protein (VW178H/W182E/W192A). Overexpression of V protein, but not that of VW178H/W182E/W192A, causes F-actin formation. Our results suggest that hPIV-2 V protein enhances hPIV2 growth through RhoA-induced F-actin formation, by selectively binding to inactive RhoA.
Keywords
Related Topics
Life Sciences
Immunology and Microbiology
Virology
Authors
Keisuke Ohta, Yusuke Matsumoto, Natsuko Yumine, Machiko Nishio,