Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10131474 | Composite Structures | 2018 | 39 Pages |
Abstract
This paper investigates the postbuckling behavior of a novel glass-protection film system under thermal environment using the element-free kp-Ritz method. The governing formulation is derived based on the first-order shear deformation plate theory considering small strains and the nonlocal elasticity theory which takes small scale effect into account. The modified Newton-Raphson method incorporated with the arc-length continuation technique is used to trace the nonlinear response of the film-foundation system. The influences of boundary conditions, nonlocal parameters, geometry and elastic foundation on the nonlinear response of glass-protection film are examined. The results show that adhesion force between graphene sheets (GSs) film and the elastic substrate can significantly enhance thermal buckling resistance of GSs film. It is also concluded that van der Waals forces between GSs film lead to consistent post-buckling behavior of individual GSs. Present study can provide suggestions on firefighting design, such as setting alarm temperature based on transition temperature.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Yang Zhang, Gen Li, David Hui, K.M. Liew,