Article ID Journal Published Year Pages File Type
10140192 Engineering Fracture Mechanics 2018 23 Pages PDF
Abstract
Magnesium (Mg) alloys are attractive candidate materials for resorbable implants including cardiovascular and orthopaedic medical devices e.g., stents and bone plates/screws. Bioresorbable implants provide a temporary support for the malfunctioned tissue/bone to heal and then completely degrade in the body. In such uses the implant material must possesses an adequate resistance to cracking such as corrosion-assisted-cracking fractures including stress corrosion cracking (SCC) and corrosion fatigue (CF). This study evaluates SCC of an extruded Mg alloy, ZK21, using slow strain rate tensile (SSRT) testing at a strain rate of 3.1 × 10−7 in modified simulated body fluid (m-SBF) at 37 °C. SCC tests under different electrochemical conditions suggest that the alloy is susceptible to SCC with a substantial decrease in mechanical properties.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,