Article ID Journal Published Year Pages File Type
10140738 Food Chemistry 2019 40 Pages PDF
Abstract
Lysozyme, an important bacteriostatic protein, is widely distributed in nature. It is generally believed that the high efficiency of lysozyme in inhibiting gram-positive bacteria is caused by its ability to cleave the β-(1,4)-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine. In recent years, there has been growing interest in modifying lysozyme via physical or chemical interactions in order to improve its sensitivity against gram-negative bacterial strains. This review addresses some significant techniques, including sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), infrared (IR) spectra, fluorescence spectroscopy, nuclear magnetic resonance (NMR), UV-vis spectroscopy, circular dichroism (CD) spectra and differential scanning calorimetry (DSC), which can be used to characterize lysozymes and methods that modify lysozymes with carbohydrates to enhance their various physicochemical characteristics. The applications of biomaterials based on lysozymes in different food matrices are also discussed.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , ,