Article ID Journal Published Year Pages File Type
10140823 Food Chemistry 2019 8 Pages PDF
Abstract
A single out-line HPLC-GC (FID) analytical method is applied to acquire the chromatographic fingerprint characteristic of the TMS-4,4′-desmetylsterol derivative fraction of several marketed edible vegetable oils in order to identify and discriminate the most valuable extra-virgin olive oils from the other vegetal oils (canola, corn, grape seed, linseed, olive pomace, peanut, rapeseed, soybean, sesame, seeds (non-specified composition but usually a blend of corn and sunflower) and sunflower). The natural structure of the preprocessed data undergoes a preliminary exploration using principal component analysis and heat map-based cluster analysis. A partial least squares-discriminant model is first trained from 53 oil samples (only 3 latent variables) and externally validated from 18 test oil samples. No classification errors are found and all the test samples are correctly classified. Additional classification models are also built in order to discriminate among vegetables-oil families and excellent results have been also achieved.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , ,