Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10141285 | Carbohydrate Polymers | 2018 | 29 Pages |
Abstract
Three-dimensional network structure of konjac glucomannan/graphene oxide (KGM/GO) sponges was successfully prepared by ice template method. The KGM/GO sponges was rich in functional groups, negatively charged under pH 2 to 10. Batch adsorption experiment was conducted to investigate the adsorption performance of the as-prepared KGM/GO sponges for organic dye (malachite green (MG)) and radionuclide (uranium U(â
¥)). The results showed that the maximum adsorption capacities of KGM/GO sponges were 266.97, 189.96 mg/g for U(â
¥) and MG, respectively. Moreover, the KGM/GO sponges exhibited an excellent selectivity for capturing U(â
¥) in multi-ion system. The adsorption process was fitted better to pseudo-second order model, while adsorption isotherms for these pollutants were well matched up to Langmuir models. In addition, KGM/GO sponges can be easily separated from the aqueous solution and could be effectively reused for 5 times without obvious loss in adsorption performance. The advantages of eco-friendliness, low cost, simple preparation process, controllable shape and size, as well as high adsorption capacities for MG and U(â
¥), suggested that KGM/GO sponges promising in water pollution control.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Tao Chen, Peiheng Shi, Jian Zhang, Yi Li, Tao Duan, Lichun Dai, Liang Wang, Xiaofang Yu, Wenkun Zhu,