Article ID Journal Published Year Pages File Type
10141858 Cryogenics 2018 11 Pages PDF
Abstract
Superfluid helium cooling offers the possibility to improve the performances of superconducting devices and infrared detectors with lower operating temperatures and provides extremely high heat transfer performances. In this paper, various cooling architectures are studied and the amplitude and the space distribution of the heat loads are taken into account. Complete and simplified analytical models are proposed using either the He II heat transport or convection. These cooling options could be evaluated to pre-design the future generation of superconducting devices required in laboratory test beds and the large scale research infrastructures such as particle accelerators and thermonuclear fusion reactors. As an example, the different schemes proposed are calculated for the recombination dipole D2 of the High Luminosity Large Hadron Collider Project at CERN (HL-LHC). Finally a comparison analysis is provided for this specific case study.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,