Article ID Journal Published Year Pages File Type
10143613 Physiology & Behavior 2018 37 Pages PDF
Abstract
The social behavior network, a collection of reciprocally connected areas within the basal forebrain and midbrain, plays a conserved role in the regulation of vertebrate social behavior. Specific behaviors are associated with patterns of activity across the network, and these activity profiles vary with species and context. We investigated how the social behavior network responds to familiar social stimuli in a seasonally flocking songbird. Further, we explored how socially-induced neural responses are modulated by endogenous nonapeptide receptor blockade. Winter flocking dark-eyed juncos were exposed to either familiar conspecifics or a familiar empty aviary following a peripheral injection of either saline or [desGly-NH2,d(CH2)5, Tyr(Me)2,Thr4]-ornithine vasotocin, an VT3 receptor antagonist. Socially-exposed animals exhibited greater Fos induction across the social behavior network. Sex and drug effects were site-specific, with females tending to exhibit greater Fos responses to social stimuli and a greater sensitivity to VT3 antagonism. We suggest that in flocking animals, VT3 activation during social interaction may shift the pattern of neural activity towards the dorsocaudal lateral septum and rostral arcopallium and away from the extended amygdala, anterior and ventromedial hypothalamus, and the caudal ventral/ventrolateral lateral septum.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Physiology
Authors
, , ,