Article ID Journal Published Year Pages File Type
10146557 Optics and Lasers in Engineering 2019 9 Pages PDF
Abstract
In measuring 3D shape with structured light techniques, systematic errors arise in the neighbourhood of discontinuities in reflectivity or geometry. A mechanism for this phenomenon is proposed, based on the finite size of the imaging system's point spread function. A theoretical analysis for the phase errors in a phase-shifting projected fringe system is given, from which a correction algorithm to minimise the systematic errors is presented. In this algorithm, a closed form expression for the errors based on the intensity values and the phase values in a neighbourhood excluding the affected region is used to remove the estimated error from the measured phase values within the affected region. Experiments on samples with both linear and circular discontinuities in reflectivity demonstrated respective reductions in systematic errors by factors of 2.5× and 3×.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , ,