Article ID Journal Published Year Pages File Type
10149663 International Journal of Applied Earth Observation and Geoinformation 2019 8 Pages PDF
Abstract
Incorrect unwrapping of dense interferometric fringes caused by large gradient displacements make it difficult to measure mining subsidence using conventional Interferometric Synthetic Aperture Radar (InSAR). This paper presents a Range Split Spectrum Interferometry assisted Phase Unwrapping (R-SSIaPU) method for the first time. The R-SSIaPU method takes advantage of (i) the capability of Range Split Spectrum Interferometry of measuring surface displacements with large spatial gradients, and (ii) the capability of conventional InSAR of being sensitive to surface displacements with limited spatial gradients. Both simulated and real experiments show that the R-SSIaPU method can monitor large gradient mining-induced surface movements with high precision. In the case of the Tangjiahui mine, the R-SSIaPU method agreed with GPS with differences of approximately 4.2 cm, whilst conventional InSAR deviated from GPS with differences of nearly 1 m. The R-SSIaPU method makes phase unwrapping less challenge, especially in the cases with large surface displacements. In addition to mining subsidence, it is believed that the R-SSIaPU method can be used to monitor surface displacements caused by landslides, earthquakes, volcanic eruptions, and glacier movements.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , , , , ,