Article ID Journal Published Year Pages File Type
10150731 Journal of Sound and Vibration 2018 35 Pages PDF
Abstract
This paper presents a novel Tunable Vibration Absorber with Liquid Elastic Chamber (TVA-LEC) for structural vibration suppression. It is formed by covering a rigid cylindrical chamber with two rubber membranes that act as springs and filling the chamber with incompressible liquid. Compared to conventional TVAs, the TVA-LEC is cost and weight efficient when it is integrated to the liquid network of a primary structure, such as oil pipelines inside aircraft wings, by utilizing the existing liquid as the mass of the TVA. A single-degree-of-freedom (SDOF) analytical model is developed for the proposed device with discussions on the tuning of its natural frequency. It is revealed that the natural frequency of the TVA-LEC can be tuned by regulating the liquid mass. The analytical model is validated by experimental tests in which the TVA-LEC is installed on a cantilever beam and the liquid mass is adjusted. The natural frequency of the TVA-LEC device shifts from 16.99 Hz to 21.99 Hz by adding liquid, which agrees well with the analytical prediction.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,