Article ID Journal Published Year Pages File Type
10153170 Medical Engineering & Physics 2018 8 Pages PDF
Abstract
Full-page (multiple-lines), electrically refreshable, portable and affordable Braille displays do not currently exist. There is a need for such an assistive technology, which could be used as the Braille-coded tactile analogue for blind people of the digital tablets used by sighted people. Turning those highly desirable systems into reality requires a radically new technology for Braille dot actuation. Here, we describe standard-sized refreshable Braille dots based on an innovative actuation technology that uses electro-responsive smart materials known as dielectric elastomers. Owing to a significantly reduced lateral size with respect to conventional Braille dot drives, the proposed solution is suitable to array multiple dots in multiple lines, so as to form full-page Braille displays. Furthermore, a significant reduction also of the vertical size makes the design suitable for the development of thin and lightweight displays, thus enabling portability. We present the first prototype samples of these new refreshable Braille dots, showing that the achievable active displacements are adequately close to the standard Braille requirements, although the force has to be further improved. The paper discusses the remaining challenges and describes promising strategies to address them.
Related Topics
Physical Sciences and Engineering Engineering Biomedical Engineering
Authors
, , ,