Article ID Journal Published Year Pages File Type
10155346 Cement and Concrete Research 2018 12 Pages PDF
Abstract
Decalcification of cement in solutions of carbonated brine is important to a host of engineering applications, especially in subsurface service environments where cementitious materials are frequently utilized as engineered barriers for wellbore seals, as well as shaft and drift seals and waste forms for nuclear waste disposal. Analysis of leaching simulations and experiments shows that, depending on solution compositions (dissolved CO2 concentration, pH, Ca ion concentration), calcite precipitation occurring during leaching of cement in contact with carbonated brine can have a significant impact on cement reactivity, in some instances leading to complete arrest of reactivity via calcium carbonate “pore-clogging”. We present modeling and experimental results that examine the range of solution conditions that can lead to pore-clogging. Analysis of the results shows that distinct regimes of leaching behavior, based on pH and pCO2, can be used to form a framework to better understand the occurrence of pore-clogging.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,