Article ID Journal Published Year Pages File Type
10155476 Journal of the European Ceramic Society 2018 27 Pages PDF
Abstract
The oxidative degradation of ZrB2 ceramics is the main challenge for its extensive application under high temperature condition. Here, we report an effective method for co-doping suitable compounds into ZrB2 in order to significantly improve its anti-oxidation performance. The incorporation of SiC and WC into ZrB2 matrix is achieved using spark plasma sintering (SPS) at 1800 °C. The oxidation behavior of ZrB2-based ceramics is investigated in the temperature range of 1000 °C-1600 °C. The oxidation resistance of single SiC-doped ZrB2 ceramics is improved due to the formation of silica layer on the surface of the ceramics. As for the WC-doped ZrB2, a dense ZrO2 layer is formed which enhances the oxidation resistance. Notably, the SiC and WC co-doped ZrB2 ceramics with relative density of almost 100% exhibit the lowest oxidation weight gain in the process of oxidation treatment. Consequently, the co-doped ZrB2 ceramics have the highest oxidation resistance among all the samples.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , , ,