Article ID Journal Published Year Pages File Type
10156387 Egyptian Journal of Petroleum 2018 9 Pages PDF
Abstract
The objective of this work is to enhance the adsorbing performance of the natural Egyptian phyllosilicate mineral, glauconite (greensand), through surface modification to obtain a particular combination of physical and chemical properties. It was found that Zn removal increased from 84% to 94%, while Pb removal varied from 96.67% to 99% by using 10-25 g/l modified glauconite in a solution having 50 mg/l Zn2+ and 30 mg/l pb2+ ions. Adsorption data were investigated using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. Linear regression methods are used to determine adsorption capacities and optimum adsorption isotherms. R2 value of Langmuir isotherm model for pb2+ is higher than other models. The maximum monolayer coverage (Qo) from Langmuir isotherm model was calculated to be 15.363 and 21.654 mg/g and the separation factor indicating a favorable sorption experiment is 0.0324 and 0.13207 for Zn2+ and Pb2+ respectively. Also from Freundlich isotherm model, the intensities of adsorption (n) that indicated favorable sorption are 1.3036 and 1.364 for Zn2+ and Pb2+ respectively. The heat of sorption process was calculated from Temkin isotherm model to be 6.44101 and 4.1353 J/mol for Zn2+ and Pb2+ respectively, that indicated to the physisorption process which B < 20 kJ/mol so, Temkin isotherm is not fitted with experimental adsorption but the mean free energy was calculated from DRK isotherm which are 24.693 and 47.093 kJ/mol, where ED < 8 proved that the adsorption experiment followed a chemisorption process. So the relative adsorption capacity for metals was in the order Pb < Zn.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , ,