| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 10156399 | Advances in Space Research | 2018 | 15 Pages |
Abstract
The scientific interest in near-Earth asteroids (NEAs) and the classification of some of those as potentially hazardous for the Earth stimulated the interest in their exploration. Close-up observations of these objects will drastically increase our knowledge about the overall NEA population. For this reason, a multiple NEA rendezvous mission through solar sailing is investigated, taking advantage of the propellantless nature of this propulsion technology. Considering a spacecraft based on the DLR/ESA Gossamer technology, this work focuses on a method for searching possible sequences of NEA encounters. The effectiveness of the approach is demonstrated through a number of fully-optimised trajectories. The results show that it is possible to visit five NEAs within 10â¯years with near-term solar-sail technology. Moreover, a study on a reduced NEA database demonstrates the reliability of the approach used, showing that 58% of the sequences found with an approximated trajectory model can be converted into real feasible solar-sail trajectories. Overall, the study shows the effectiveness of the proposed automatic optimisation algorithm, which is able to find solutions for a large number of mission scenarios without any input required from the user.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Space and Planetary Science
Authors
Alessandro Peloni, Bernd Dachwald, Matteo Ceriotti,
