Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10181016 | Comptes Rendus Mathematique | 2016 | 7 Pages |
Abstract
Nous proposons une nouvelle approche pour le calcul d'approximations bases réduites pour des inégalités variationnelles du premier type. Les trois principales composantes de cette approche sont : (i) une approximation utilisant des variables d'écart pour la solution ; (ii) une approximation primale pour le multiplicateur de Lagrange ; (iii) une borne supérieure a posteriori de l'erreur sur la solution approchée. La stricte faisabilité de l'approximation primale par variable d'écart nous permet deux améliorations majeures par rapport aux méthodes existantes. La première est de pouvoir borner, a posteriori, de façon précise, l'erreur commise. La deuxième est l'utilisation d'une décomposition hors ligne/en ligne grâce à laquelle le coût de calcul de cette borne reste complètement indépendant de la (grande) dimension originale du problème. Les résultats numériques présentent une comparaison des performances entre cette nouvelle approche et les méthodes existantes.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
Authors
Zhenying Zhang, Eduard Bader, Karen Veroy,