Article ID Journal Published Year Pages File Type
10212318 Neuropeptides 2018 9 Pages PDF
Abstract
Medial prefrontal cortex (mPFC) ischemia affects post-stroke cognitive outcomes. We aimed to investigate the effects of different doses and routes of cerebrolysin (CBL) on the structural synaptic plasticity and cognitive function after mPFC ischemia in mice. Thence, CBL (1, 2.5 ml/kg/i.p./daily) or (1 ml/kg/i.n./daily), were administrated in photothrombotic mouse model of mPFC ischemia for two weeks. Episodic and spatial memories were assessed by the What-Where-Which (WWWhich) and Barnes tasks. Growth-associated protein 43 (GAP-43), postsynaptic density-95 (PSD-95), and synaptophysin (SYN) levels were measured in the lesioned area using western blot analysis. Dendritic arbors, spine densities, and morphology were assessed via Golgi-Cox staining. Treatment with 2.5 ml/kg/i.p. and 1 ml/kg/i.n. doses attenuated mPFC ischemia-induced episodic and spatial memories impairment. Results showed an obvious increase in the GAP-43, PSD-95 and SYN levels and improvement in the structural synaptic indexes in lesioned area induced by the same doses and routes of CBL. In conclusion, we found that specific doses/routes of CBL have positive effects on the structural synaptic plasticity and cognitive outcomes after mPFC ischemia.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, , , , , ,