Article ID Journal Published Year Pages File Type
10217021 Journal of Investigative Dermatology 2018 33 Pages PDF
Abstract
Wound healing is essential for skin repair after injury, and it consists of hemostasis, inflammation, re-epithelialization, and remodeling phases. Successful re-epithelialization, which relies on proliferation and migration of epidermal keratinocytes, requires a reduction in tissue inflammation. Therefore, understanding the molecular mechanism underlying the transition from inflammation to re-epithelialization will help to better understand the principles of wound healing. Currently, the in vivo functions of specific microRNAs in wound healing are not fully understood. We observed that miR-31 expression is strongly induced in wound edge keratinocytes, and is directly regulated by the activity of NF-κB and signal transducer and activator of transcription 3 signaling pathways during the inflammation phase. We used miR-31 loss-of-function mouse models to demonstrate that miR-31 promotes keratinocyte proliferation and migration. Mechanistically, miR-31 activates the Ras/mitogen-activated protein kinase signaling by directly targeting Rasa1, Spred1, Spred2, and Spry4, which are negative regulators of the Ras/mitogen-activated protein kinase pathway. Knockdown of these miR-31 targets at least partially rescues the delayed scratch wound re-epithelialization phenotype observed in vitro in miR-31 knockdown keratinocytes. Taken together, these findings identify miR-31 as an important cell-autonomous mediator during the transition from inflammation to re-epithelialization phases of wound healing, suggesting a therapeutic potential for miR-31 in skin injury repair.
Related Topics
Health Sciences Medicine and Dentistry Dermatology
Authors
, , , , , , , , , , , , , , , ,