Article ID Journal Published Year Pages File Type
10223851 Estuarine, Coastal and Shelf Science 2018 39 Pages PDF
Abstract
Canonical Correspondence Analysis (CCA) confirmed that soil had a main role in driving focal dune species composition as found in other Mediterranean areas and indicated that three factors (field capacity, pH and CaCO3) sufficiently explain patterns of plant species. An inverse relation between field capacity, which proves to be the most decisive feature for differences in species ecological requirements between macrohabitats, and pH was observed. Generalized Additive Models (GAMs) showed that: i) the focal species of fixed dunes have a higher probability of occurrence and response curves that overlap at high field capacity and TOC values and at low pH, showing an opposite trend with respect to the species of embryonic and mixed dunes; ii) species of mixed dunes have a probability of occurrence linked to different values of CaCO3, with Ammophila arenaria showing its optimum at high CaCO3 values. Thus our results sustain the hypothesis that dune focal species, diagnostic and characteristic of coastal dune macrohabitats, have different ecological responses with respect to soil factors. Moreover, species within the same habitat can have different ecological responses due to species competition. Data about edaphic requirements of sand dune species and modelling of their ecological responses suggests that focal dune species can be bio-indicators of soil conditions and provide useful indications for conservation, monitoring and restoration of Mediterranean coastal habitats.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , ,