Article ID Journal Published Year Pages File Type
10224389 Journal of Structural Geology 2018 40 Pages PDF
Abstract
Depth-sensing indentation tests were performed to obtain the loop energy (equivalent to the energy consumed to produce the indentation) and the residual depth of the indentation using a triangular pyramidal diamond indenter for the minerals in Mohs hardness scale except for diamond, as well as other minerals (apophyllite, forsterite, and tourmaline), at a maximum load ranging from 30 to 100 mN. A new graphic presentation is proposed that shows the hardness of minerals in log(penetration depth)−log(loop energy) space. The data for each mineral under different loads give a straight regression line with a slope of 2.6-2.9 (except for talc, which yields a slope of 2.2), while the data for different minerals under a given load yield a straight regression line with a slope of 1.1-1.2. A theoretical analysis of ideal materials, in terms of log(penetration depth)−log(loop energy) space, shows the existence of two series of parallel regression lines with slopes of 3 (data for each mineral at different loads) and 1 (data for different minerals under a given load). The results show a slight deviation between the measured and theoretical slopes, probably reflecting a progressive change in the mechanical properties of the minerals during the indentation tests.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , , , , ,