Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10226286 | ISA Transactions | 2018 | 11 Pages |
Abstract
The problem of finite-time decentralized neural adaptive constrained control is studied for large-scale nonlinear time-delay systems in the non-affine form. The main features of the considered system are that 1) unknown unmatched time-delay interactions are considered, 2) the couplings among the nested subsystems are involved in uncertain nonlinear systems, 3) based on finite-time stability approach, asymmetric saturation actuators and output constraints are studied in large-scale systems. First, the smooth asymmetric saturation nonlinearity and barrier Lyapunov functions are used to achieve the input and output constraints. Second, the appropriately designed Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions, and the neural networks are employed to approximate the unknown nonlinearities. Note that, due to unknown time-delay interactions and the couplings among subsystems, the controller design is more meaningful and challenging. At last, based on finite-time stability theory and Lyapunov stability theory, a decentralized adaptive controller is proposed, which decreases the number of learning parameters. It is shown that the designed controller can ensure that all closed-loop signals are bounded and the tracking error converges to a small neighborhood of the origin. The simulation studies are presented to show the effectiveness of the proposed method.
Related Topics
Physical Sciences and Engineering
Engineering
Control and Systems Engineering
Authors
Wenjie Si, Dongshu Wang,