Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10226482 | International Journal of Refrigeration | 2018 | 68 Pages |
Abstract
This study proposes a simulation that incorporates energy, exergy, and economic factors into the development of an absorption-compression cycle for air-conditioning that makes use of heat sources available in Algeria. The springs have been used on record range in temperature between 60 and 94°C. LiBr-H2O and LiCl-H2O have been used in the absorption section and low global warming potential fluids including R1234yf, R1234ze (E), and R1233zd (E) in the vapor compression section. In using these combinations of fluids, a recorded (51.36-54.16%) decrease in electricity consumption has been documented in comparison with conventional cycles. Furthermore, the coefficient of performance (COP) values for all of the combinations used ranged between (0.432 and 0.659). Enhanced performance was noted in the systems that used (LiBr-H2O/R1234yf). Economically, the use of geothermal energy is more financially sound in comparison to the use of solar energy in depth of well's less than 16â¯m.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Mechanical Engineering
Authors
Khelifa Salhi, Mourad Korichi, Khaled M. Ramadan,