Article ID Journal Published Year Pages File Type
10244459 Journal of Catalysis 2005 12 Pages PDF
Abstract
A nanosized zirconia-supported 12-tungstophosphoric acid (TPA) in SBA-15 composite was prepared by wet impregnation of TPA/ZrO2 nanoparticles inside the mesoporous channels of SBA-15. The resulting composite material was calcined at 1123 K and characterized by elemental analysis, powder X-ray diffraction, nitrogen adsorption isotherms, transmission electron microscopy (TEM), scanning electron microscopy (SEM), solid-state 31P CP-MAS NMR, 29Si MAS NMR, UV-vis diffuse reflectance spectra, FTIR, TPD of ammonia, FTIR pyridine adsorption, and thermogravimetric analysis (TG-DTG). The synthesized TPA/ZrO2/SBA-15 showed a well-ordered hexagonal mesoporous structure and mesoporous support SBA-15 stabilized ZrO2-t (tetragonal) phase with crystal size in the range of 3-4 nm. SBA-15 was a better support than MCM-41 and MCM-48 because it retained its mesostructure even after high TPA loading and high calcination temperatures. Mesoporous silica support plays an important role in stabilizing the catalytically active tetragonal phase of zirconia, which gave the most active catalysts. The catalysts were examined for their catalytic activities in the liquid phase benzylation of phenol with benzyl alcohol and the catalyst 15 wt% TPA/22.4 wt% ZrO2/SBA-15 calcined at 1123 K was found to have high acidity and to be 10 times more active than neat TPA/ZrO2 under the reaction conditions studied in benzylation of phenol.
Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , ,