Article ID Journal Published Year Pages File Type
10244725 Journal of Catalysis 2005 12 Pages PDF
Abstract
The catalytic combustion of methane has been investigated over eight different bimetallic palladium catalysts, comprising the co-metals Co, Rh, Ir, Ni, Pt, Cu, Ag, or Au. The catalysts were characterized by TEM, EDS, PXRD, and temperature-programmed oxidation (TPO). It was found that a catalyst containing both Pd and Pt was the most promising, as it had a high activity that did not decline with time. The catalyst containing Pd and Ag was also a promising candidate, but its activity was slightly lower. For PdCo and PdNi, the co-metals formed spinel structures with the alumina support, with the result that the co-metals did not affect the combustion performance of palladium. For PdRh, PdIr, PdCu, and PdAg, the co-metals formed separate particles consisting of the corresponding metal oxide. These catalysts, except PdRh, showed a stable activity. For PdPt and PdAu, the co-metals formed alloys with palladium, and both catalysts showed a stable activity.
Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , ,