Article ID Journal Published Year Pages File Type
10250290 Dendrochronologia 2005 6 Pages PDF
Abstract
Tree-ring radial expansion estimator (TREE) is an integrated radial growth model that allows users to define short-term climate change scenarios to anticipate the impact upon mature trees found growing at high elevation on Vancouver Island, British Columbia. Five individualistic models were built to represent the radial growth behaviour of mountain hemlock (Tsuga mertensiana (Bong.) Carr), yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach), western red-cedar (Thuja plicata Donn), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees. The models were developed on climate-radial growth relationships incorporating Nanaimo climate station data, and were able to explain from 55 to 68 per cent of the variance in radial growth. The models can be run with modifications to yearly precipitation and temperature variables, giving the user the ability to investigate the radial-growth impacts of a wide range of possible climate change scenarios. Results from eight such scenarios show that species growing within their ecological limits illustrate a limited change in radial growth to forecasted climate, while species growing at an ecotonal boundary are usually very sensitive to a specific climate variables (e.g., July temperature). A forecasted alteration to this key variable will then radically alter the radial-growth rate of the species.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, ,