| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 10264277 | Combustion and Flame | 2015 | 7 Pages |
Abstract
Dynamic behavior and 3D spatial structure of low-Lewis-number counterflow premixed flames are numerically studied in the frame of thermo-diffusive model with one-step chemical reaction. The diverse combustion regimes are described and regions of existence of these regimes in equivalence ratio/stretch rate plane are identified. Qualitative comparison between numerical results and results of microgravity experiments are discussed. Experiments and numerical simulations demonstrate that at small stretch rate conditions lean low-Lewis-number counterflow flames can appear as a set of separate ball-like flames in a state of chaotic motion. The extension of extinction limits associated with existence of sporadic combustion regimes is observed.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Roman Fursenko, Sergey Minaev, Hisashi Nakamura, Takuya Tezuka, Susumu Hasegawa, Tomoya Kobayashi, Koichi Takase, Masato Katsuta, Masao Kikuchi, Kaoru Maruta,
