Article ID Journal Published Year Pages File Type
10265133 Comptes Rendus Chimie 2016 8 Pages PDF
Abstract
Ten years ago, Liu and co-workers measured pair-correlated speed distributions for OH+CH4/CD4 reactions by means of velocity map imaging (VMI) techniques at a collision energy of ∼10 kcal/mol [B. Zhang, W. Shiu, J. J. Lin and K. Liu, J. Chem. Phys 122, 131102 (2005); B. Zhang, W. Shiu and K. Liu, J. Phys. Chem. A 109, 8989 (2005)]. Recently, two of us could semi-quantitatively reproduce these measurements by performing full-dimensional quasi-classical trajectory calculations in a quantum spirit on an ab-initio potential energy surface of their own [J. Espinosa-Garcia and J. C. Corchado, Theor. Chem. Acc. (2015) 134: 6; J. Phys. Chem. B 120, 1446 (2016)]. The goal of the present work is to show that these results can be significantly improved by adding a few more constraints in order to better comply with the restrictions imposed by VMI. Overall, the level of agreement between theory and experiment is remarkable owing to the large dimensionality of the reactions under scrutiny. This is an encouraging result considering the computational challenges of quantum scattering calculations for such large processes.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,