Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10265908 | Computers & Chemical Engineering | 2005 | 11 Pages |
Abstract
In this paper, we extend recent results on adaptive extremum seeking control to a class of nonlinear distributed parameter systems. We address the real-time optimization of a chemical reaction that occurs in a tubular reactor described by an hyperbolic set of partial differential equations. An estimation and a control algorithm that take into account temperature constraints are developed based on a Lyapunov functional. We apply the algorithm to the on-line optimization of the Williams-Otto reaction where the kinetics are assumed a priori unknown. The result of this algorithm is a feedback profile control that steers the system to its optimum.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Nicolas Hudon, Michel Perrier, Martin Guay, Denis Dochain,