| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 10269339 | Electrochimica Acta | 2005 | 6 Pages |
Abstract
LiCoO2 thin films were deposited using radio frequency (rf) magnetron sputtering system on stainless steel substrates. Different rf powers, up to 150 W, were applied during deposition. The as-deposited films exhibited (1 0 1) and (1 0 4) preferred orientation and the nanocrystalline film structure was enhanced with increasing rf power. The film crystallinity was examined using X-ray diffraction, Raman scattering spectroscopy and transmission electron microscopy. The compositions of the films were determined by inductively coupled plasma-mass spectroscopy. The average discharge capacity of as-deposited films is about 59 μAh/(cm2 μm) for cut-off voltage range of 4.2 and 3.0 V. From the electrochemical cycling data, it is suggested that as-deposited LiCoO2 films with a nanocrystalline structure and a favorable preferred orientation, e.g. (1 0 1) or (1 0 4) texture, can be used without post-annealing at high temperatures for solid-state thin film batteries.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Shin-Wook Jeon, Jung-Kyu Lim, Sung-Hwan Lim, Sung-Man Lee,
