Article ID Journal Published Year Pages File Type
10269411 Electrochimica Acta 2005 9 Pages PDF
Abstract
Nanobelts are a new class of semiconducting metal oxide nanowires. The ribbon-like nanobelts are chemically pure and structurally uniform single crystals, with clean, sharp, smooth surfaces, and rectangular cross-sections. Positive and negative dielectrophoresis (DEP) was demonstrated for the first time on semiconducting oxide nanobelts. This effect was then used for the fabrication of a nanodevice, which consisted of SnO2 nanobelts attached to castellated gold electrodes defined on a glass substrate, and covered by a microchannel. The SnO2 nanobelts (width ∼ 100-300 nm, thickness ∼ 30-40 nm) were suspended in ethanol and introduced into the microchannel. An alternating (AC) voltage of ∼9.8 V peak to peak, with variable frequency, was applied between the electrodes (minimum electrode gap ∼ 20 μm), which corresponds to an average electric field strength of less than 2.5 × 105 V/m. In the 10 Hz-1 kHz range, repulsion between the nanobelts and the electrodes occurred, while in the 1-10 MHz range, attraction was observed. Once the nanobelts touched the electrodes, those that were sufficiently long bridged the electrode gaps. The device was characterized and can potentially be used as a nanosensor.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,