Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10270689 | Electrochimica Acta | 2018 | 26 Pages |
Abstract
The lithium-rich layered materials have received much attention as high-energy-density cathodes to cater for future lithium-ion batteries. However, the growth of detrimental spinel configuration upon cycling can destroy the stability of structures and become the significant challenge for their commercialization. In view of previous research of alkali metal doping, we have successfully prepared the surface K+ doped Li1.2Ni0.2Mn0.6O2, which delivers an outstanding cycling durability with 99.96% of fully activated capacity (260â¯mAh gâ1) even after 100 cycles. Moreover, the K+ doped material displays less voltage fading, demonstrating the alleviation of structure transformation from layered toward spinel phase. The effects of K+ doping were further investigated by the soft X-ray absorption spectroscopy. The Mn L-edges and the O K-edge prove that the doped K+ may play an indispensable role in stabilizing the surface O22â and facilitating the reduction of Mn3+ ion with undesirable Jahn-Teller effect towards lower valence Mn2+.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Mengchu Yang, Bei Hu, Fushan Geng, Chao Li, Xiaobing Lou, Bingwen Hu,