Article ID Journal Published Year Pages File Type
10273323 Fuel 2005 5 Pages PDF
Abstract
The volatilization behavior of fluorine in five Chinese coals was investigated during fluidized-bed pyrolysis and CO2-gasification at a temperature range of 500-900 °C. The effect of co-existed and added calcium on fluorine volatility during pyrolysis was also determined. With increasing pyrolysis temperature, the volatility of fluorine increases. However, the volatility is greatly dependent on the fluorine chemical forms occurred in coal. Except for Datong and Zhungeer coal, more than 65% of fluorine in other three coals occurs as the steady forms. Fluorapatite is not the major carrier of fluorine in the coals studied. Fluorine volatility is retarded by coexisting calcium during coal pyrolysis, indicating that at least part of the stable forms of fluorine in coal might occur as calcium fluoride or calcium fluoride with complex compounds which are stable even at high pyrolysis temperature. The addition of CaO and limestone can suppress the release of fluorine during pyrolysis. The effect of CaO is better than that of limestone. The volatility of fluorine of coal during CO2-gasification depends on not only the occurrence mode of fluorine, but also the gasification reactivity of the coal. Compared with N2 atmosphere, CO2 is more favorable to the release of fluorine from coal.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,