Article ID Journal Published Year Pages File Type
10274708 Fuel Processing Technology 2016 6 Pages PDF
Abstract
The paper describes the impact of the combustion chamber on the efficiency of the gasifiers cold gas efficiencies. It presents the current state-of-the-art of the heat pipe reformer as well as the current state of the construction of the 100 kW pilot at the Institute of energy process engineering (FAU-EVT). The paper shows experiments on the combustor discussing CO emissions and combustor efficiency in order to calculate a prospected cold gas efficiency of the whole system. Both, biomass and coal can be used as feedstock for the gasification system and results from combustor operation using lignite and wood pellets are shown. The combustion chamber provided CO emissions below 30 mg/m3. The internal air-preheater achieved temperatures of more than 500 °C. An analysis of heat losses finally indicates potentials for optimization of the Heatpipe Reformers cold gas efficiencies in the commercial scale.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,