Article ID Journal Published Year Pages File Type
10274920 Fuel Processing Technology 2005 20 Pages PDF
Abstract
An abundance of Hg2+, HCl, and γ-Fe2O3 in Blacksville flue gas and the inertness of injected α-Fe2O3 with respect to heterogeneous Hg0 oxidation in Absaloka and Falkirk flue gases suggested that γ-Fe2O3 catalyzes Hg2+ formation and that HCl is an important Hg0 reactant. The filtration of Absaloka and Falkirk combustion flue gases at 150 °C through fabric filters with ≈60 g/m2 γ-Fe2O3 indicated that about 30% of the Hg0 in Absaloka and Falkirk flue gases was converted to Hg2+ and/or Hg(p). HCl injection (100 ppmv) into the Absaloka combustion flue gas converted most of the Hg0 to Hg2+, whereas HCl injection into the Falkirk flue gas converted most of the Hg0 and Hg2+ to Hg(p). Additions of γ-Fe2O3 and HCl did not have a synergistic effect on Hg0 oxidation. The filtration of Absaloka and Falkirk flue gases through much greater fabric filter loadings of 475 g/m2 γ-Fe2O3 essentially doubled the baghouse Hg[tot] removal efficiency to about 50%. Results from this investigation demonstrate the importance of evaluating potential Hg0 reactants and oxidation catalysts in actual coal combustion flue gases.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,