| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 10277445 | Journal of Food Engineering | 2013 | 10 Pages | 
Abstract
												In this work, a mass transfer study on aroma compound recovery by pervaporation process was performed using a model based on solution-diffusion theory. CFD method was employed to solve the governing mass transfer equations by considering the flux coupling. Concentration profiles of penetrants inside the membrane as well as permeation flux and aroma permeate concentration through the membrane were determined. The modeling results were validated by the experimental data obtained for pervaporative recovery of isopentyl acetate and n-hexanol from their binary aqueous solutions with composite PDMS membrane. The influence of key operating parameters such as feed aroma concentration and temperature on the flux and permeate concentration was also investigated theoretically and experimentally. The results showed that the aroma permeate concentration as well as the total and partial fluxes increased with an increase in the feed aroma content and feed temperature. The predicted results were in good agreement with experimental data.
											Related Topics
												
													Physical Sciences and Engineering
													Chemical Engineering
													Chemical Engineering (General)
												
											Authors
												Amirhossein Mafi, Ahmadreza Raisi, Abdolreza Aroujalian, 
											