Article ID Journal Published Year Pages File Type
10284136 Composite Structures 2005 14 Pages PDF
Abstract
In this work the crushing response and crashworthiness characteristics of thin-wall square FRP (fibre reinforced plastic) tubes that were impact tested at high compressive strain rate are compared to the response of the same tubes in static axial compressive loading. The material combination of the tested specimens was carbon fibres in the form of reinforcing woven fabric in epoxy resin, and the tested tubes were constructed trying three different laminate stacking sequences and fibre volume contents on approximately the same square cross-section. Comparison of the static and dynamic crushing characteristics is made by examining the collapse modes, the shape of the load-displacement curves, the peak and average compressive load and the absorbed amount of crushing energy in both loading cases. In addition, the influence of the tube geometry (axial length, aspect ratio and wall thickness), the laminate material properties-such as the fibre volume content and stacking sequence-and the compressive strain rate on the compressive response, the collapse modes, the size of the peak load and the energy absorbing capability of the thin-wall tubes is extensively analysed.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , ,