Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10284159 | Composite Structures | 2005 | 8 Pages |
Abstract
An accurate theory for laminated piezoelectric composite plates in cylindrical bending is developed for free vibration analysis. The displacement and electric potential fields are depicted approximately by the accurate displacement and electric potential distribution functions through thickness, respectively. The two functions are formulated according to particular solutions to the three-dimensional elasticity equilibrium equations and the electrostatics charge equation. The complicated electromechanical coupling relations and the interfacial continuity conditions are enforced. Accordingly the two functions are coupled and make the displacement and potential fields coupled. The governing equations use only four displacement and potential variables, the number of which is independent of the number of layers involved. A corresponding finite element model is also developed. Natural frequencies of piezoelectric laminates subjected to different sets of boundary conditions are given and parameter studies are conducted in numerical examples. The high accuracy of this theory is demonstrated by comparing the present results with the existing exact three-dimensional solutions.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Xiaoping Shu,