Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10284172 | Composite Structures | 2005 | 9 Pages |
Abstract
An analytical method is presented to investigate hydrothermal effects on locally buckling for an elliptical delamination near the surface of cylindrical laminated shells. The critical strain of non-linear buckling for a locally elliptic delamination of cylindrical laminated shells is obtained by considering transverse displacements of the elliptically sub-laminated shells. The stacking sequence of sub-laminated shells may be multilayer and asymmetric. The geometrical axis of sub-laminated shells may be arbitrary. The Young's modulus and the thermal and humidity expansion coefficients of the material are considered as functions of temperature change in base-laminated shells. The critical strains of locally buckling for cylindrical laminated shells subjected to hydrothermal effects are extracted for different stacking sequences, and different radii of base-laminated shells, by applying Rayleigh-Ritz method based on second variation of potential energy. From results carried out, it is found that the critical strain from the non-linear buckling for a locally elliptic delamination near the surface of a cylindrical laminated shell presents a lower value than that from linear considerations.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
X. Wang, Y.C. Zhang, H.L. Dai,