Article ID Journal Published Year Pages File Type
10293393 Nuclear Engineering and Design 2005 10 Pages PDF
Abstract
This paper is concerned with the prediction of limit load of the piping branch junctions with circumferential crack under internal pressure. Recently, we have developed a new approach for predicting the limit load of two-cylinder intersection structures with diameter ratio larger than 0.5, which has been successfully applied to defect free cases under various loading conditions. In the present work, we consider the extension of the approach to cover cracked piping branch junctions. On the basis of stress analysis in the vicinity of intersection line, a closed form of limit load solution for piping branch junctions with circumferential crack was developed. Then, 36 finite element (FE) models of piping branch junction with various dimensions of structure and crack were analyzed by using nonlinear finite element software. The limit loads from FE analysis and the proposed solution are compared with each other. Overall good agreement between the estimated solutions and the FE results provides confidence in the use of the proposed formulae for defect assessment of piping branch junctions in practice.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,