Article ID Journal Published Year Pages File Type
10293692 Nuclear Engineering and Design 2005 14 Pages PDF
Abstract
The objective of this paper is to develop a nonlinear numerical model to investigate the stability and nonlinear dynamics of a nuclear-coupled two-phase natural circulation loop. Some stability maps, parametric effects and transient characteristics of this natural circulation loop have been studied. Results indicate that the system indeed has two instability regions, the type-I and type-II instabilities, as is well known for a natural circulation loop. Parameters may induce different effects on the system stability in type-I and type-II unstable regions. In particular, the void-reactivity feedback destabilizes the system in both regions of low and high operating powers. Moreover, by strengthening nuclear feedback effect, period-doubled bifurcation may prevail in the system at relatively high inlet subcoolings and eventually a chaotic attractor appears with a fractal dimension of 1.79 ± 0.01 and an embedding dimension of 5.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,