Article ID Journal Published Year Pages File Type
10296111 Thin-Walled Structures 2005 36 Pages PDF
Abstract
In this paper, an experimental and numerical study on the ultimate strength of cracked steel plate elements subjected to axial compressive or tensile loads is carried out. The ultimate strength reduction characteristics of plate elements due to cracking damage are investigated with varying size and location of the cracking damage, both experimentally and numerically. Ultimate strength tests on cracked steel plates under axial tension and cracked box type steel structure models under axial compression are undertaken. A series of ANSYS nonlinear finite element analyses for cracked plate elements are performed. Based on the experimental and numerical results obtained from the present study, theoretical models for predicting the ultimate strength of cracked plate elements under axial compression or tension are developed. The results of the experiments and numerical computations obtained are documented. The insights developed will be very useful for the ultimate limit state based risk or reliability assessment of aging steel plated structures with cracking damage.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,