Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10296498 | Tunnelling and Underground Space Technology | 2005 | 9 Pages |
Abstract
Ground movement and contact pressure on the lining of Stillwater Tunnel (Utah, USA) were investigated. Axisymmetirc finite element analysis was used in the analysis. Power law and hyperbolic creep models were used to model ground squeezing and to show the differences in the results between the two models. Creep parameters for the two models were evaluated based on the experimental creep and strength tests that were performed by other investigators on the gouge materials encountered along the tunnel axis through the heavily sheared and fault zones of the Red Pine shale. The results of the analysis which include normalized inward movement at the tunnel crown, normalized radial ground convergence with depth, and lining-ground contact pressure were compared with the results that were measured along the tunnel axis by other investigators. The results of the analysis show that lining pressure and deformation can be predicted well from the use of power law creep model if the delay time before lining erection is considered.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geotechnical Engineering and Engineering Geology
Authors
F.I. Shalabi,