Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10298182 | European Neuropsychopharmacology | 2013 | 8 Pages |
Abstract
Recent evidence suggests that cannabinoid receptor agonists may regulate serotonin 2A (5-HT2A) receptor neurotransmission in the brain, although no molecular mechanism has been identified. Here, we present experimental evidence that sustained treatment with a non-selective cannabinoid agonist (CP55,940) or selective CB2 receptor agonists (JWH133 or GP1a) upregulate 5-HT2A receptors in a neuronal cell line. Furthermore, this cannabinoid receptor agonist-induced upregulation of 5-HT2A receptors was prevented in cells stably transfected with either CB2 or β-Arrestin 2 shRNA lentiviral particles. Additionally, inhibition of clathrin-mediated endocytosis also prevented the cannabinoid receptor-induced upregulation of 5-HT2A receptors. Our results indicate that cannabinoid agonists might upregulate 5-HT2A receptors by a mechanism that requires CB2 receptors and β-Arrestin 2 in cells that express both CB2 and 5-HT2A receptors. 5-HT2A receptors have been associated with several physiological functions and neuropsychiatric disorders such as stress response, anxiety and depression, and schizophrenia. Therefore, these results might provide a molecular mechanism by which activation of cannabinoid receptors might be relevant to some cognitive and mood disorders in humans.
Keywords
Related Topics
Life Sciences
Neuroscience
Biological Psychiatry
Authors
J.M. Franklin, T. Vasiljevik, T.E. Prisinzano, G.A. Carrasco,