Article ID Journal Published Year Pages File Type
10298876 European Neuropsychopharmacology 2015 17 Pages PDF
Abstract
We analyzed the differential topography of PSD transcripts by incremental doses of two antipsychotics: haloperidol, the prototypical first generation antipsychotic with prevalent dopamine D2 receptors antagonism, and asenapine, a second generation antipsychotic characterized by multiple receptors occupancy. We investigated the expression of PSD genes involved in synaptic plasticity and previously demonstrated to be modulated by antipsychotics: Homer1a, and its related interacting constitutive genes Homer1b/c and PSD95, as well as Arc, C-fos and Zif-268, also known to be induced by antipsychotics administration. We found that increasing acute doses of haloperidol induced immediate-early genes (IEGs) expression in different striatal areas, which were progressively recruited by incremental doses with a dorsal-to-ventral gradient of expression. Conversely, increasing acute asenapine doses progressively de-recruited IEGs expression in cortical areas and increased striatal genes signal intensity. These effects were mirrored by a progressive reduction in locomotor animal activity by haloperidol, and an opposite increase by asenapine. Thus, we demonstrated for the first time that antipsychotics may progressively recruit PSD-related IEGs expression in cortical and subcortical areas when administered at incremental doses and these effects may reflect a fine-tuned dose-dependent modulation of the PSD.
Related Topics
Life Sciences Neuroscience Biological Psychiatry
Authors
, , , , , , , , ,