Article ID Journal Published Year Pages File Type
10302274 Journal of Psychiatric Research 2013 8 Pages PDF
Abstract
Neuroimaging studies in multiple modalities have implicated the left or right dorsolateral prefrontal cortex (here, middle frontal gyrus) in attentional functions, in ADHD, and in dopamine agonist treatment of ADHD. The far lateral location of this cortex in the brain, however, has made it difficult to study with magnetic resonance spectroscopy (MRS). We used the smaller voxel sizes of the magnetic resonance spectroscopic imaging (MRSI) variant of MRS, acquired at a steep coronal-oblique angle to sample bilateral middle frontal gyrus in 13 children and adolescents with ADHD and 13 age- and sex-matched healthy controls. Within a subsample of the ADHD patients, aspects of attention were also assessed with the Trail Making Task. In right middle frontal gyrus only, mean levels of N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (tNAA), creatine + phosphocreatine (Cr), choline-compounds (Cho), and myo-inositol (mI) were significantly lower in the ADHD than in the control sample. In the ADHD patients, lower right middle frontal Cr was associated with worse performance on Trails A and B (focused attention, concentration, set-shifting), while the opposite relationship held true for the control group on Trails B. These findings add to evidence implicating right middle frontal cortex in ADHD. Lower levels of these multiple species may reflect osmotic adjustment to elevated prefrontal cortical perfusion in ADHD and/or a previously hypothesized defect in astrocytic production of lactate in ADHD resulting in decelerated energetic metabolism (Cr), membrane synthesis (Cho, mI), and acetyl-CoA substrate for NAA synthesis. Lower Cr levels may indicate attentional or executive impairments.
Related Topics
Life Sciences Neuroscience Biological Psychiatry
Authors
, , , , , , , ,