Article ID Journal Published Year Pages File Type
10302457 Journal of Psychiatric Research 2013 6 Pages PDF
Abstract
A number of studies have implicated disruptions in prepulse inhibition (PPI) of the startle response in both schizophrenia patients and animal models of this disorder. These disruptions are believed to reflect deficits in sensorimotor gating and are ascribed to aberrant filtering of sensory inputs leading to sensory overload and enhanced “noise” in neural structures. Here we examined auditory evoked potentials in a rodent model of schizophrenia (MAM-GD17) during an auditory PPI paradigm to better understand this phenomenon. MAM rats exhibited reductions in specific components of auditory evoked potentials in the orbitofrontal cortex and an abolition of the graded response to stimuli of differing intensities indicating deficient intensity processing in the orbitofrontal cortex. These data indicate that aberrant sensory information processing, rather than being attributable to enhanced noise in neural structures, may be better attributed to diminished evoked amplitudes resulting in a reduction in the “signal-to-noise” ratio. Therefore, the ability for sensory input to modulate the ongoing background activity may be severely disrupted in schizophrenia yielding an internal state which is insufficiently responsive to external input.
Related Topics
Life Sciences Neuroscience Biological Psychiatry
Authors
, ,